Abstract

The aim of this study was to investigate the effects of andrographolide on matrix metalloproteinases (MMP) 1, 3, and 13 and inducible nitric oxide synthase (iNOS) in human articular chondrocytes from osteoarthritic cartilage. Passaged chondrocytes were pretreated with or without andrographolide for 2 h, followed by coincubation with interleukin-1 beta (IL-1β) 1 ng/ml for 24 h. Expression levels of MMP-1, 3, and 13, tissue inhibitor of metalloproteinase-1 (TIMP-1), and iNOS were evaluated using real-time-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Nitric oxide (NO) was analyzed using the Griess reaction assay. Involvement of nuclear factor kappa B (NF-κB) was assessed by Western blotting, transient transfection, and luciferase reporter assay. Andrographolide tested in these in vitro studies was found be an effective antiarthritic agent, as evidenced by potent inhibition of MMP-1, 3, and 13 and iNOS expression, as well as upregulation of TIMP-1 in IL-1β-stimulated human articular chondrocytes (p < 0.05). The mechanism of andrographolide's inhibitory effects was mediated by attenuating the activation of NF-κB in human chondrocytes in the presence of IL-1β. Andrographolide was a potent inhibitor of the production of inflammatory and catabolic mediators by chondrocytes, suggesting that this natural compound may merit consideration as a therapeutic agent for treating and preventing osteoarthritis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call