Abstract

Activation of mitogen-activated protein kinases (MAPKs) in neurons may underlie the pathogenesis of Alzheimer's disease (AD). Acrolein, a ubiquitous pollutant, has been reported to implicate in the etiology of AD. Our previous data showed that acrolein changed the levels of key AD-associated proteins, including advanced glycation end products (RAGE), A-disintegrin and metalloprotease (ADAM-10), and beta-site amyloid-beta peptide cleaving enzyme 1 (BACE-1). In this study, we investigated whether acrolein-induced alterations of AD-associated proteins are relevant to MAPKs activation, and strategies to inhibit MAPKs activation yield benefits to acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. We found that acrolein activated MAPKs signaling pathways to mediate cells apoptosis, and then altered the levels of AD-associated proteins ADAM-10, BACE-1 and RAGE. Inhibitors of MAPKs signaling pathways attenuated the cells death and restored the proteins levels of ADAM-10, BACE-1 and RAGE in varying degrees induced by acrolein. Taken together, activated MAPKs signaling pathways should be underlying the pathology of acrolein-induced neuronal disorders. Inhibitors of MAPKs pathways might be promising agents for acrolein-related diseases, such as AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.