Abstract

Combination of a photosensitizer, 5-aminolevulinic acid (ALA), with photodynamic therapy (PDT) has been widely used to treat skin squamous cell carcinoma (SCC). However, a portion of SCC patients do not respond well to PDT. The molecular reason for this resistance is not clear. We hypothesize that mitogen-activated phosphorylation kinase (MAPK) plays a key role in mediating SCC resistance to PDT. To determine whether inhibition of MAPK signaling enhances the anti-tumor effect of ALA-PDT in SCC. The human squamous carcinoma cell line, SCL-1, was either untreated or treated with various combinations of ALA, PDT light source and inhibitors of MAPK signaling components. ALA-PDT treatment significantly decreased cell viability, increased the percentage of annexin-V positive cells and resulted in formation of apoptotic bodies. ALA-PDT treated cells showed increased levels of p-MEK, p-ERK1/2, p-p38, p-Elk-1, p-JNK and p-c-Jun. Addition of inhibitors for ERK1/2 (PD98059), p38 (SB203580) and JNK (SP60125) reversed the changes and led to a more dramatic decrease in SCL-1 cell viability than seen with ALA-PDT alone. Inhibition of the MAPK pathway enhances the cytotoxic effect of ALA-PDT on SCL-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call