Abstract

The biochemical mechanisms by which macrophages become activated to the tumoricidal state are poorly understood. To investigate the role of calcium in this process, the effect of calcium channel blockers and calmodulin antagonists on the acquisition of tumoricidal properties by macrophages activated by a number of different agents was examined. Activation of thioglycollate-stimulated C57BL/6 mouse peritoneal macrophages by macrophage activation factor (MAF) plus LPS, IFN-γ plus LPS or the calcium ionophore, A23187, was inhibited in a doseependent fashion by the calcium channel blockers nifedipine and verapamil. These agents blocked the influx of 45Ca into macrophages activated by MAF plus LPS. Macrophage activation was also inhibited by chlorpromazine, W-7, and calmidazolium at concentrations known to perturb calmodulin function. The data suggest that activation of macrophages to the tumoricidal state is a calcium-dependent process involving the participation of calcium-regulated biochemical reactions whose activities can be modulated by pharmacological agents that frustrate transmembrane calcium fluxes and/or inhibit calmodulin function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.