Abstract

Luman, also known as cAMP-response element-binding protein 3, is an endoplasmic reticulum stress-related protein that has been identified as a novel transcriptional coregulator of a variety of nuclear receptors. Herein, immunohistochemistry results showed that Luman was specifically expressed in mouse Leydig cells in an age-dependent increase manner, from prepuberty to sexual maturation. Luman was not detected in Sertoli cells within the seminiferous tubules at any developmental period. The immunofluorescent experiment indicated that Luman was mainly located within the cytoplasm of murine Leydig tumor cells (MLTC-1) and primary Leydig cells (PLCs). To investigate the physiological function of Luman, experiments were conducted to examine the consequences of short hairpin RNA- and small interfering RNA-mediated Luman knock-down in MLTC-1 and PLCs, respectively. Luman knock-down significantly upregulated the expression of steroidogenic acute regulatory, cytochrome P450 cholesterol side-chain cleavage enzymes, 3β-hydroxysteroid dehydrogenase, and 17-α-hydroxylase/C17-20 lyase in MLTC-1 cells and PLCs. Luman knock-down caused an increase in human chorionic gonadotropin-stimulated testosterone production in vitro and in vivo. The nuclear receptors SF-1 and Nur-77 were significantly increased upon Luman knock-down in MLTC-1. By contrast, the level of the nuclear receptor SHP decreased. Luciferase reporter assay results demonstrated that Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters. These data suggested that Luman expressed in mouse Leydig cells in an age-dependent increase manner. Luman knock-down upregulated the activity of SF-1 and Nur-77 promoters, which lead to the increase of testosterone synthesis and steroidogenesis genes expression. In conclusion, these findings provide us with new insights into the role Luman played in male reproduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.