Abstract
All- trans retinoic acid (ATRA) was incorporated into lipid emulsions in an attempt to alter its distribution characteristics and improve its inhibition of liver cancer metastasis. Lipid emulsions composed of egg phosphatidylcholine, cholesterol, and soybean oil were the optimized carriers for ATRA delivery, as shown by the submicron particle size and high incorporation efficiency. The particle size and zeta potential of ATRA incorporated into emulsions were about 133 nm and −11 mV, respectively. In vitro drug release study demonstrated that the release of ATRA from emulsions was sustained in the absence and present of bovine serum albumin, suggesting that ATRA was stable when incorporated in emulsions. After intravenous administration in mice, [ 3H]cholesteryl hexadecyl ether incorporated into emulsion, which is the inherent distribution of emulsions, accumulated gradually mainly in the liver. The blood concentration and hepatic accumulation of [ 3H]ATRA incorporated into emulsion was significantly higher than that of serum dissolving [ 3H]ATRA, which represent the original distribution characteristic of free ATRA. In a murine liver metastasis model by colon adenocarcinoma, the liver metastasis number and liver weight were significantly reduced and the survival time of mice was prolonged following intravenous injection of ATRA incorporated into emulsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.