Abstract
Mosquito oostatic factor, a naturally occurring decapeptide (YDPAPPPPPP), strikingly resembles the primary structure of oligoproline-rich regions within the protein ActA, a bacterial surface protein required for Listeria motility in host cells. When microinjected into Listeria-infected PtK2 cells, the insect oostatic factor rapidly blocks Listeria-induced actin rocket tail assembly as well as intracellular locomotion of this pathogen. At intracellular concentrations of about 90 nM, transient inhibition of rocket tail formation and bacterial locomotion occurs, followed by full recovery of tail length and motility. However, at 0.9 microM oostatic factor, both processes are permanently arrested. Introduction of oostatic factor by microinjection also causes PtK2 peripheral membrane retraction in both Listeria-infected and uninfected cells. Epifluorescence microscopy with bodipy-phallacidin reveals that cells microinjected with the insect factor lose all actin stress fibers and accumulate F-actin in regions of membrane retraction. When the insect peptide is combined with profilin as an equimolar binary solution (1 microM [final concentration] each), intracellular addition fails to inhibit Listeria rocket-tail formation, fails to block intracellular bacterial movement, and no longer causes marked membrane retraction. The ability of profilin to neutralize the inhibitory action of oostatic factor is consistent with complex formation, and this finding suggests that profilin may interact directly with ActA peptide as well as a host cell peripheral membrane component to promote actin filament assembly by locally generating ATP-actin. Dispersal of profilin from such sites by oligoproline-rich peptide inhibitors suggests that profilin is directly involved in intracellular pathogen locomotion and reorganization of actin cytoskeleton of the host cell peripheral membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.