Abstract

The antibiotic bacitracin was found to inhibit the incorporation of mannose and GlcNAc from their respective sugar nucleotides into lipid-linked saccharides. The inhibition of both systems was apparent in the aorta particulate enzyme system but it was much more pronounced with the solubilized enzyme system. In both cases, GlcNAc incorporation into Dol-P-P-GlcNAc was more sensitive than mannose incorporation into Dol-P-Man, with 50% inhibition being seen at about 0.1–0.2 m m antibiotic. Bacitracin inhibition of mannose incorporation appeared to be overcome at high concentrations of dolichyl phosphate but, in these cases, an unexplained stimulation was observed. However, GlcNAc inhibition could not be overcome by high concentrations of dolichol phosphate, metal ion, or both together. Thus, the mechanism of inhibition by bacitracin is not clear. Bacitracin also inhibited the transfer of mannose from GDP-mannose to lipid-linked oligosaccharides and to glycoprotein in the particulate enzyme, as well as the transfer of radioactivity from Dol-P-Man or from lipid-linked oligosaccharides to glycoprotein. Thus, bacitracin apparently blocks each of the steps in the lipid-linked pathway. In yeast spheroplasts, bacitracin inhibited the incorporation of [ 14C]mannose into Dol-P-Man, into lipid-linked oligosaccharides, and into glycoprotein. However, in this case, the antibiotic also blocked the incorporation of leucine into protein. Bacitracin also inhibited the cell-free synthesis of mannosyl-phosphoryl-decaprenol in Mycobacterium smegmatis with 50% inhibition being observed at a concentration of about 0.5 m m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call