Abstract

Background. Cytokine production is a critical component of ischemia/reperfusion (IR) injury. In the liver, Kupffer cells produce cytokines and chemokines (i.e., cytokines with chemoattractant properties) that are important mediators in neutrophil recruitment and subsequent hepatocellular injury. Therefore, the role of Kupffer cells in chemokine production in hepatic IR injury was investigated.Methods. Adult male C57BL/6 mice underwent 90 min of partial hepatic ischemia followed by various reperfusion times (i.e., 0, 1.5, 3, and 6 h). Gadolinium chloride (GC), which inhibits Kupffer cell activity, was administered to mice 48 and 24 h prior to ischemia. The control group received a corresponding volume of normal saline. Plasma levels of the cytokine macrophage inflammatory protein-2 (MIP-2), KC, and tumor necrosis factor (TNF)-α and liver mRNA were measured. Liver injury was assessed by plasma level of alanine transaminase (ALT) and histopathology.Results. A reperfusion time-dependent liver injury occurred as indicated by increased levels of plasma ALT and histopathology. The injury was associated with increased plasma TNF-α, MIP-2, and KC and their hepatic mRNA expression and neutrophil infiltration into ischemic lobes of the liver. GC treatment significantly reduced the number of Kupffer cells as determined by the immunostained liver tissue sections. The extent of liver injury significantly decreased in GC-treated mice that were associated with decreased levels of plasma ALT, TNF-α, MIP-2, and KC and neutrophil infiltration.Conclusions. This study suggests that Kupffer cells are major contributors to cytokine production in hepatic IR and their modulation may serve as a potential target for therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.