Abstract

BackgroundHypokalemia reduces the cardiac repolarization reserve. This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Under physiological conditions KCa2 plays a minor role in ventricular repolarization. However, this might change under hypokalemia because of concomitant increases in ventriculay -60r intracellur Ca2+.PurposeTo study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC).MethodsThe current at +10 mV was compared in HEK293 cells stably expressing KCa2.3 perfused first with normo- and then hypokalemic solutions (4 mM K+ and 2.5 mM K+, respectively). Guinea pig hearts were isolated and perfused with normokalemic (4 mM K+) Krebs-Henseleit solution, followed by perfusion with drug or vehicle control. The perfusion was then changed to hypokalemic solution (2.5 mM K+) in presence of drug. 30 animals were randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or TMC. QT-interval, the interval from the peak to the end of the T wave (Tp–Te), ventricular effective refractory period (VERP), arrhythmia score, and ventricular fibrillation (VF) incidence were recorded.ResultsHypokalemia slightly increased KCa2.3 current compared to normokalemia. Application of KCa2 channel inhibitors and dofetilide prolonged the QT interval corrected for heart rate. Dofetilide, but none of the KCa2 channel inhibitors increased Tp–Te during hypokalemia. During hypokalemia 4/6 hearts in the TMC group developed VF (two spontaneously, two by S1S2 stimulation) whereas 5/6 hearts developed VF in the dofetilide group (two spontaneously, three by S1S2 stimulation). In comparison, 0/6, 1/6, and 1/6 hearts developed VF when treated with the KCa2 channel inhibitors AP30663, ICA, or AP14145, respectively.ConclusionHypokalemia was associated with an increased incidence of VF, an effect that also seen in the presence of dofetilide. In comparison, the structurally and functionally different KCa2 channel inhibitors, ICA, AP14145, and AP30663 protected the heart from hypokalemia induced VF. These results support that KCa2 inhibition may be associated with a better safety and tolerability profile than dofetilide.

Highlights

  • Intra- and extra-cellular K+ concentrations are closely regulated physiologically

  • Because hypokalemia increases intracellular calcium and compromises the repolarizing reserve, we hypothesized that inhibition of KV11.1 and KCa2 would be pro-arrhythmic in a hypokalemic setting. To study this we investigated the effects of KCa2 channel inhibition under hypokalemic conditions as compared to the class III anti-arrhythmic agent dofetilide

  • A total of 30 animals were included in the study and randomly assigned to 5 groups: ICA, AP14145, AP30663, dofetilide, or time-matched controls (TMC)

Read more

Summary

Introduction

Intra- and extra-cellular K+ concentrations are closely regulated physiologically. Hypokalemia, defined as K+ serum levels below 3.5 mM, has been reported to occur in 16% of patients when first admitted to acute medical departments (Jensen et al, 2015). Hypokalemia lowers the Na/K-ATPase activity, hyperpolarizes the resting membrane potential, and despite increasing the driving force for outward K+ current it suppresses the cardiac IK1, IKr, and Ito currents. This reduction in the repolarizing reserve in turn prolongs the cardiac action potential, and promotes the development of early-after depolarizations (EAD) and initiation of ventricular tachycardia (VT) (for review see (Weiss et al, 2017)). This prolongs the QT-interval and increases the risk of ventricular arrhythmia; a risk that is exacerbated by administration of classical class 3 anti-arrhythmic agents.Small conductance Ca2+-activated K+-channels (KCa2) are a promising new atrial selective target for treatment of atrial fibrillation. Purpose: To study the effects of pharmacological KCa2 channel inhibition by the compounds AP14145, ICA, or AP30663 under hypokalemic conditions as compared to dofetilide and hypokalemia alone time-matched controls (TMC)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.