Abstract

Rats with liver cirrhosis exhibit the hepatopulmonary syndrome composed of blunted hypoxic pulmonary vasoconstriction and arterial hypoxemia. The purpose of this study was to investigate the roles of nitric oxide (NO) and endothelin-1 (ET-1) in the blunted hypoxic pressor response (HPR) in rats with common bile duct ligation (CBDL). Lungs from CBDL rats exhibited markedly blunted HPR, increased endothelial NO synthase (NOS) protein expression, and decreased ET-1 mRNA and peptide expression. The blunted HPR was not reversed by sequential NOS and soluble guanylyl cyclase inhibition by nitro-L-arginine and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ), respectively, or by NOS inhibition combined with ET-1 addition. The blunted HPR was not due to a generalized inability to vasoconstrict because perfusion pressure was equally elevated by increased perfusate KCl in CBDL and sham lungs. After KCl vasoconstriction, HPR was potentiated and did not differ between CBDL and sham lungs. Blunted HPR was also completely restored in CBDL lungs treated with nitro-L-arginine, ODQ, and the Ca(2+)-activated K(+) channel blockers apamin and charybdotoxin. These results indicate that although CBDL-induced liver cirrhosis is associated with increased NO and decreased ET-1 in the lung, the blunted HPR is a result of additional factors and appears to involve Ca(2+)-activated K(+) channel activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call