Abstract

Soybean is a difficult crop to manipulate through Agrobacteriumtumefaciens-mediated genetic transformation. Plant–bacterium interaction plays an important role in the transformation process. Being rich with isoflavones, soybean may have an adverse effect on the A. tumefaciens-mediated genetic transformation. To investigate whether high content of endogenous isoflavones in soybean is a serious obstacle in achieving high efficient Agrobacterium-mediated transformation in soybean, a series of experiments on inhibition of isoflavone biosynthesis were conducted to improve upon soybean transformation efficiency. Results indicated that soybean isoflavones inhibited A. tumefaciens growth and respiration, the transformation efficiency [β-glucuronidase (GUS) transient expression] was negatively correlated with the phenylalanine ammonia-lyase activity and isoflavones content. The biosynthesis of soybean isoflavones was partially inhibited by sonication treatment and applying antagonists in co-culture medium and thereby decreased the adverse effects of isoflavones on Agrobacterium infection. A discernible improvement in transformation efficiency was achieved when sonication at 40 kHz for 3 min was applied along with Agro-infection and the explants were cultured on co-culture medium containing 20 μM α-aminooxyacetic acid (AOA), with the percentage of GUS transient expression as 41.4 %, being 3.6 times higher than that not sonicated and co-cultured on medium without AOA. Sonication was found not only to simply make micro-wounds for Agrobacterium to penetrate or releasing phenolic compounds for induced Agrobacterium vir gene expression; it disturbed the biosynthesis of isoflavones at the transcription level and decreased the adverse effects of isoflavones on soybean transformation, and thereby improving soybean transformation efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call