Abstract

The mutant Z form of alpha1-antitrypsin (alpha1AT) is responsible for > 95% of all individuals with alpha1AT deficiency, an important inherited cause of emphysema and liver disease. Since secreted Z alpha1AT is a functional antiprotease, we hypothesized that interrupting catabolism of retained Z alpha1AT might increase its transport out of cells, causing an increase in extracellular protease protection. Both the protein translation inhibitor cycloheximide and the specific inhibitor of proteasome function, lactacystin, prevented intracellular degradation of Z alpha1AT. Moreover, this inhibition of degradation was associated with partial restoration of Z alpha1AT vesicular transport. This effect was observed in a model system of transfected CHO cells as well as in human alveolar macrophages synthesizing Z alpha1AT. This study supports the hypothesis that altering the intracellular fate of a mutant protein may be an option in the treatment of diseases associated with misfolded but potentially functional proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.