Abstract

Apoptosis, NF-κB activation, and IRF3 activation are a triad of intrinsic immune responses that play crucial roles in the pathogenesis of infectious diseases, cancer, and autoimmunity. FLIPs are a family of viral and cellular proteins initially found to inhibit apoptosis and more recently to either up- or down-regulate NF-κB. As such, a broad role for FLIPs in disease regulation is postulated, but exactly how a FLIP performs such multifunctional roles remains to be established. Here we examine FLIPs (MC159 and MC160) encoded by the molluscum contagiosum virus, a dermatotropic poxvirus causing skin infections common in children and immunocompromised individuals, to better understand their roles in viral pathogenesis. While studying their molecular mechanisms responsible for NF-κB inhibition, we discovered that each protein inhibited IRF3-controlled luciferase activity, identifying a unique function for FLIPs. MC159 and MC160 each inhibited TBK1 phosphorylation, confirming this unique function. Surprisingly, MC159 coimmunoprecipitated with TBK1 and IKKε but MC160 did not, suggesting that these homologs use distinct molecular mechanisms to inhibit IRF3 activation. Equally surprising was the finding that the FLIP regions necessary for TBK1 inhibition were distinct from those MC159 or MC160 regions previously defined to inhibit NF-κB or apoptosis. These data reveal previously unappreciated complexities of FLIPs, and that subtle differences within the conserved regions of FLIPs possess distinct molecular and structural fingerprints that define crucial differences in biological activities. A future comparison of mechanistic differences between viral FLIP proteins can provide new means of precisely manipulating distinct aspects of intrinsic immune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.