Abstract

In this study, the ability of salvianolic acids A, B, C, F, G and calix[[Formula: see text]]arenes ([Formula: see text], 5, 6 and 8) with different upper rims in the inhibition of insulin amyloid fibril formation was studied using molecular docking. The results were analyzed from a molecular point of view. All of the considering ligands interacted with significant residues of insulin, which had a crucial role in the process of insulin fibrillation. The interactions among the ligands and insulin residues could be done through hydrogen bonding and hydrophobic interactions with good binding affinity. So, these ligands could prevent the formation of the insulin fibril. The good consistency of the docking results of [Formula: see text]-sulfonatocalix[4]arene and [Formula: see text]-sulfonatocalix[6]arene with the experimental results in the previous literature represented the capacity of the current theoretical method to supplement and interpret experimental findings. Also, in this study, salvianolic acids A, C, F and G were suggested as new inhibitors of the insulin amyloid fibril.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.