Abstract
Impaired callus remodeling significantly contributes to the delayed healing of osteoporotic fractures; however, the underlying mechanisms remain unclear. Sensory neuronal signaling plays a crucial role in bone repair. In this study, we aimed to investigate the pathological mechanisms hindering bone remodeling in osteoporotic fractures, particularly focusing on the role of sensory neuronal signaling. We demonstrate that in ovariectomized (OVX) mice, the loss of CGRP+TrkA+ sensory neuronal signaling during callus remodeling correlates with increased Cx3cr1+iOCs expression within the bone callus. Conditional knockout of Cx3cr1+iOCs restored CGRP+TrkA+ sensory neuronal, enabling normal callus remodeling progression. Mechanistically, we further demonstrate that Cx3cr1+iOCs secrete Sema3A in the osteoporotic fracture repair microenvironment, inhibiting CGRP+TrkA+ sensory neurons' axonal regeneration and suppressing nerve-bone signaling exchange, thus hindering bone remodeling. Lastly, in human samples, we observed an association between the loss of CGRP+TrkA+ sensory neuronal signaling and increased expression of Cx3cr1+iOCs. In conclusion, enhancing CGRP+TrkA+ sensory nerve signaling by inhibiting Cx3cr1+iOCs activity presents a potential strategy for treating delayed healing in osteoporotic fractures. Inhibition of inflammatory osteoclasts enhances CGRP+TrkA+ signaling and accelerates callus remodeling in osteoporotic fractures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.