Abstract

We tested the hypothesis that ethanol would aggravate the deleterious effects of sub-lethal cecal ligation and puncture (SL-CLP) sepsis in the cardiorenal system and that inhibition of inducible nitric oxide synthase (iNOS) would prevent such response. Male C57BL/6 mice were treated with ethanol for 12weeks. One hour before SL-CLP surgery, mice were treated with N6-(1-iminoethyl)-lysine (L-NIL, 5mg/kg, i.p.), a selective inhibitor of iNOS. A second dose of L-NIL was administered 24h after SL-CLP surgery. Mice were killed 48h post surgery and the blood, the renal cortex, and the left ventricle (LV) were collected for biochemical analysis. L-NIL attenuated the increase in serum creatinine levels induced by ethanol, but not by SL-CLP. Ethanol, but not SL-CLP, increased creatine kinase (CK)-MB activity and L-NIL did not prevent this response. In the renal cortex, L-NIL prevented the redox imbalance induced by ethanol and SL-CLP. Inhibition of iNOS also decreased lipoperoxidation induced by ethanol and SL-CLP in the LV. L-NIL prevented the increase of pro-inflammatory cytokines and reactive oxygen species induced by ethanol and (or) SL-CLP in the cardiorenal system, suggesting that iNOS modulated some of the molecular mechanisms that underlie the deleterious effects of both conditions in the cardiorenal system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.