Abstract

Clostridioides difficile is responsible for post-antibiotic diarrhea and most of the pseudomembranous colitis cases. Multiple recurrences, one of the major challenges faced in C. difficile infection (CDI) management, can be considered as chronic infections, and the role of biofilm formation in CDI recurrences is now widely considered. Therefore, we explored if the probiotic yeast Saccharomyces boulardii CNCM I-745 could impact the in vitro formation of C. difficile biofilm. Biomass staining and viable bacterial cell quantification showed that live S. boulardii exerts an antagonistic effect on the biofilm formation for the three C. difficile strains tested. Confocal laser scanning microscopy observation revealed a weakening and an average thickness reduction of the biofilm structure when C. difficile is co-incubated with S. boulardii, compared to the single-species bacterial biofilm structure. These effects, that were not detected with another genetically close yeast, S. cerevisiae, seemed to require direct contact between the probiotic yeast and the bacterium. Quantification of the extrapolymeric matrix components, as well as results obtained after DNase treatment, revealed a significant decrease of eDNA, an essential structural component of the C. difficile biofilm matrix, in the dual-species biofilm. This modification could explain the reduced cohesion and robustness of C. difficile biofilms formed in the presence of S. boulardii CNCM I-745 and be involved in S. boulardii clinical preventive effect against CDI recurrences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.