Abstract

The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.