Abstract

A new type of small-molecular sirtuin inhibitor was designed on the basis of the proposed catalytic mechanism for deacetylation of acetylated lysine substrates by sirtuins. Among the compounds thus designed and synthesized, we found that 2k, which contains an ethoxycarbonyl group at the alpha position to the acetamide of acetylated lysine substrate analogue 1, showed potent inhibitory activity in an in vitro assay using recombinant SIRT1, with high selectivity over SIRT2 and SIRT3. Mechanistic study by means of kinetic analysis, mass spectroscopy, and computation indicated that the enol form of compound 2k nucleophilically attacks NAD(+) in the active site of SIRTs to afford the stable compound 2k-ADP-ribose conjugate 5, leading to inhibition of the enzyme activity. Compound 2k also caused a dose-dependent increase of p53 acetylation in human colon cancer HCT116 cells, indicating inhibition of SIRT1 in the cells. These results have implications for the development of selective sirtuin inhibitors by means of mechanism-based drug design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call