Abstract

N-arachidonoyl dopamine (NADA) has complex effects on nociception mediated via cannabinoid CB(1) receptors and the transient receptor potential vanilloid receptor 1 (TRPV1). Anandamide, the prototypic CB(1)/TRPV1 agonist, also inhibits T-type voltage-gated calcium channel currents (I(Ca)). These channels are expressed by many excitable cells, including neurons involved in pain detection and processing. We sought to determine whether NADA and the prototypic arachidonoyl amino acid, N-arachidonoyl glycine (NAGly) modulate T-type I(Ca) Human recombinant T-type I(Ca) (Ca(V)3 channels) expressed in HEK 293 cells and native mouse T-type I(Ca) were examined using standard whole-cell voltage clamp electrophysiology techniques. N-arachidonoyl dopamine completely inhibited Ca(V)3 channels with a rank order of potency (pEC(50)) of Ca(V)3.3 (6.45) > or = Ca(V)3.1 (6.29) > Ca(V)3.2 (5.95). NAGly (10 micromol.L(-1)) inhibited Ca(V)3 I(Ca) by approximately 50% or less. The effects of NADA and NAGly were voltage- but not use-dependent, and both compounds produced significant hyperpolarizing shifts in Ca(V)3 channel steady-state inactivation relationships. By contrast with anandamide, NADA and NAGly had modest effects on Ca(V)3 channel kinetics. Both NAGly and NADA inhibited native T-type I(Ca) in mouse sensory neurons. N-arachidonoyl dopamine and NAGly increase the steady-state inactivation of Ca(V)3 channels, reducing the number of channels available to open during depolarization. These effects occur at NADA concentrations at or below to those affecting CB(1) and TRPV1 receptors. Together with anandamide, the arachidonoyl neurotransmitter amides, NADA and NAGly, represent a new family of endogenous T-type I(Ca) modulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.