Abstract

Prion disease is a neurodegenerative disorder that can occur among humans and other animals. The aberrant isoform of prion protein PrPSc has been identified as the infectious agent. The neuropeptide PrP106-126 has been widely used as a suitable model to study the biological and physiochemical properties of PrPSc. PrP106-126 shares several physicochemical and biological properties with PrPSc, including cellular toxicity, fibrillogenesis, and membrane-binding affinity. Ruthenium complexes are commonly employed in anti-cancer studies due to their low cellular toxicity. In this study, six hexacoordinated ruthenium complexes with different molecular configurations were used to investigate their effects on PrP106-126 aggregation inhibition. Results revealed that the interaction between the complexes and the peptide included metal coordination and hydrophobic interaction mainly. Those complexes with aromatic structure displayed better inhibitory effects, although they only had a common binding affinity to PrP106-126. This study provided better understanding on the interaction of metal complexes with PrP106-126 and paved the way for potential Ru-based metallodrugs against prion diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.