Abstract

Human papillomavirus type 16 (HPV16) DNA has been found in ∼50% of cervical tumors worldwide. HPV infection starts with the binding of the virus capsid to heparan sulfate (HS) receptors exposed on the surface of epithelial basal layer keratinocytes. Previously, our group isolated a high-affinity RNA aptamer (Sc5c3) specific for HPV16 L1 virus-like particles (VLPs). In this study, we report the inhibition of HPV16 infection by Sc5c3 in a pseudovirus (PsVs) model. 293TT cells were infected by HPV16 PsVs containing the yellow fluorescent protein (YFP) as reporter gene. Incubation of HPV16 PsVs with Sc5c3 before infection resulted in a dose-dependent decrease in YFP fluorescence, suggesting infection inhibition. Aptamer degradation by RNase A restored PsVs infectivity, supporting the previous observation that Sc5c3 aptamer can inhibit infection. VLP mutants with removed HS binding sites were used in binding assays to elucidate the Sc5c3 blocking mechanism; however, no binding difference was observed between wild-type and mutant VLPs, suggesting that pseudoinfection inhibition relies on mechanisms additional to electrostatic HS binding site interaction. A DNA/RNA Sc5c3 version also inhibited HPV PsVs infection, suggesting that a modified, nuclease-resistant Sc5c3 may be used to inhibit HPV16 infection in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.