Abstract

Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 μM), GST P1-1 by sulphinpyrazone (IC50 = 66 μM), GST A1-1 by sulphasalazine, and camptothecin (34 and 74 μM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 μM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 μM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.