Abstract

The antineoplastic prodrug Cloretazine exerts its cytotoxicity via a synergism between 2-chloroethylating and carbamoylating activities that are cogenerated upon activation in situ. Cloretazine is reported here to inhibit the nucleotidyl-transferase activity of purified human DNA polymerase β (Pol β), a principal enzyme of DNA base excision repair (BER). The 2-chloroethylating activity of Cloretazine alkylates DNA at the O 6 position of guanine bases resulting in 2-chloroethoxyguanine monoadducts, which further react to form cytotoxic interstrand DNA crosslinks. Alkylated DNA is often repaired via BER in vivo. Inhibition of the polymerase activity of Pol β may account for some of the synergism between Cloretazine’s two reactive subspecies in cytotoxicity assays. This inhibition was only observed using agents with carbamoylating activity. Furthermore, while therapeutically relevant concentrations of Cloretazine inhibited the polymerase activity of Pol β, the enzyme’s lyase activity, which may also participate in BER, was not significantly inhibited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.