Abstract

Cancer is characterized by uncontrolled cell proliferation, which makes novel therapies highly desired. In this study, the effects of near-field low-intensity pulsed ultrasound (LIPUS) stimulation on T47D human breast cancer cell and healthy immortalized MCF-12A breast epithelial cell proliferation were investigated in monolayer cultures. A customized ultrasound (US) exposure setup was used for the variation of key US parameters: intensity, excitation duration, and duty cycle. Cell proliferation was quantified by 5-bromo-2'-deoxyuridine and alamarBlue assays after LIPUS excitation. At a 20% duty cycle and 10-minute excitation period, we varied LIPUS intensity from to 100 mW/cm2 (spatial-average temporal-average) to find a gradual decrease in T47D cell proliferation, the decrease being strongest at 100 mW/cm2 . In contrast, healthy MCF-12A breast cells showed an increase in proliferation when exposed to the same conditions. Above a 60% duty cycle, T47D cell proliferation decreased drastically. Effects of continuous wave US stimulation were further explored by varying the intensity and excitation period. These experiments concluded that, irrespective of the waveform (pulsed or continuous), LIPUS stimulation could inhibit the proliferation of T47D breast cancer cells, whereas the same behavior was not observed in healthy cells. The study demonstrates the beneficial bioeffects of LIPUS on breast cancer cells and offers the possibility of developing novel US-mediated cancer therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.