Abstract

BHMT (betaine-homocysteine methyltransferase) remethylates homocysteine to form methionine. SAM (S-adenosylmethionine) inhibits BHMT activity, but whether SAM modulates BHMT gene expression is unknown. Transcriptional regulation of the human BHMT is also unknown. The present study examined regulation of the human BHMT gene by SAM and its metabolite, MTA (5'-methylthioadenosine). To facilitate these studies, we cloned the 2.7 kb 5'-flanking region of the human BHMT gene (GenBank accession number AY325901). Both SAM and MTA treatment of HepG2 cells resulted in a dose- and time-dependent decrease in BHMT mRNA levels, which paralleled their effects on the BHMT promoter activity. Maximal suppression was observed with the BHMT promoter construct -347/+33, which contains a number of NF-kappaB (nuclear factor kappaB) binding sites. SAM and MTA treatment increased NF-kappaB nuclear binding and NF-kappaB-driven luciferase activities, and increased nuclear binding activity of multiple histone deacetylase co-repressors to the NF-kappaB sites. Overexpression of p50 and p65 decreased BHMT promoter activity, while blocking NF-kappaB activation increased BHMT expression and promoter activity, and prevented SAM but not MTA's ability to inhibit BHMT expression. The NF-kappaB binding site at -301 is responsible, at least in part, for this effect. Lower BHMT expression can impair homocysteine metabolism, which can induce ER (endoplasmic reticulum) stress. Indeed, MTA treatment resulted in increased expression ER stress markers. In conclusion, SAM and MTA down-regulate BHMT expression in HepG2 cells in part by inducing NF-kappaB, which acts as a repressor for the human BHMT gene. While SAM's mechanism is NF-kappaB-dependent, MTA has both NF-kappaB-dependent and -independent mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.