Abstract

We examined the effects of L-type calcium channel blockers (CCBs) on toxicity exerted by activated human astrocytes and microglia towards SH-SY5Y human neuronal cells. The CCBs nimodipine (NDP) and verapamil (VPM) both significantly suppressed toxic secretions from human astrocytes and astrocytoma U-373 MG cells that were induced by interferon (IFN)-γ. NDP also inhibited neurotoxic secretions of human microglia and monocytic THP-1 cells that were induced by the combination of lipopolysaccharide and IFN-γ. In human astrocytes, both NDP and VPM reduced IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT) 3. They also inhibited the astrocytic production of IFN-γ-inducible T cell α chemoattractant (I-TAC). These results suggest that CCBs attenuate IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. L-type CCBs, especially NDP, might be a useful treatment option for a broad spectrum of neurodegenerative diseases, including Alzheimer disease, where the pathology is believed to be exacerbated by neurotoxic glial activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call