Abstract
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was recently identified as both diagnostic marker and therapeutic target in the treatment of several types of cancer. In this study, we have examined AKR1B10 inhibition by five xanthone derivatives, components of pericarps of mangosteen, of which α- and γ-mangostins show potential anti-cancer properties. Among the five xanthones, γ-mangostin was found to be the most potent competitive inhibitor (inhibition constant, 5.6 nM), but its 7-methoxy derivative, α-mangostin, was the second potent inhibitor (inhibition constant, 80 nM). Molecular docking of the two mangostins in AKR1B10 and site-directed mutagenesis of the putative binding residues revealed that Phe123, Trp220, Val301 and Gln303 are important for the tight binding of γ-mangostin, and suggested that the 7-methoxy group of α-mangostin impairs the inhibitory potency by altering the orientation of the inhibitor molecule in the substrate-binding site of the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.