Abstract

ObjectiveInflammatory bowel disease (IBD) is listed by the World Health Organization as one of the modern intractable diseases. High mobility histone box 1 (HMGB1), originally described as a non-histone nucleoprotein involved in transcriptional regulation, was later identified as a pro-inflammatory cytokine that may contribute to the pathogenesis of inflammatory diseases such as IBD. Neutrophil extracellular traps (NETs) play an important role in the pathophysiology of IBD The aim of this study was to investigate the role of HMGB1 in experimental colitis mice and its potential mechanisms of action. MethodsWe first constructed the experimental colitis mouse model. Intervention of mice by rhHMGB1 supplementation or HMGB1 inhibition. The pathological morphology of the colon was observed using HE staining. Apoptosis of colonic tissue intestinal epithelial cells was evaluated using Tunel assay. The expression of HMGB1, ZO-1 and occludin in colon tissue was detected by immunohistochemistry, ELISA and western-blot. We also assessed the effects of HMGB1 on colonic injury, NETs content, macrophage polarization and inflammatory cells in mice. The regulatory effect of HMGB1 inhibition on NETs was assessed by combining DNase I. ResultsInhibition of HMGB1 significantly reduced the inflammatory model in experimental colitis mice, as evidenced by reduced body weight, increased colonic length, reduced DAI scores and apoptosis, reduced inflammatory response, and improved colonic histopathological morphology and intestinal mucosal barrier function. Meanwhile, inhibition of HMGB1 was able to reduce the expression of CD86, citH3 and MPO and increase the expression of CD206 in the colonic tissue of mice. In addition, DNase I intervention was also able to improve colonic inflammation in mice. And the best effect was observed when DNase I and inhibition of HMGB1 were intervened together. ConclusionInhibition of HMGB1 ameliorates IBD by mediating NETs and macrophage polarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call