Abstract
Small interfering RNA (siRNA) application in therapy still faces a major challenge with the lack of an efficient and specific delivery system. Current vehicles are often responsible for poor efficacy, safety concerns, and burden costs of siRNA-based therapeutics. Here, we describe a novel strategy for targeted delivery of siRNA molecules to inhibit human immunodeficiency virus (HIV) infection. Specific membrane translocation of siRNA inhibitor was addressed by an engineered nanobody targeting the HIV co-receptor CXCR4 (NbCXCR4) in fusion with a single-chain variable fragment (4M5.3) that carried the FITC-conjugated siRNA. 4M5.3-NbCXCR4 conjugate (4M5.3X4) efficiently targeted CXCR4+ T lymphocytes, specifically translocating siRNA by receptor-mediated endocytosis. Targeted delivery of siRNA directed to the mRNA of HIV transactivator tat silenced Tat-driven viral transcription and inhibited the replication of distinct virus clades. In summary, we have shown that the engineered nanobody chimera developed in this study constitutes an efficient and specific delivery method of siRNAs through CXCR4 receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.