Abstract

HIV-1 entry into its host cell is modulated by its transmembrane envelope glycoprotein (gp41). The core of the activated conformation of gp41 consists of a trimer of heterodimers comprising a leucine/isoleucine zipper sequence (represented here by the synthetic peptide N36 or by the longer N51 peptide) and a C-terminal highly conserved region (represented here by C34). A correlation was found between the action of DP178, which is a potent inhibitor of HIV-1 entry into its host cell, and its ability to interact with the leucine/isoleucine zipper sequence. This correlation was further tested and confirmed by circular dichroism spectroscopy. We found that whereas DP178 perturbs the partial α-helix nature of peptides corresponding to the leucine/isoleucine zipper sequence (N36 or N51), it cannot perturb the trimer of heterodimers conformation, modeled by the complex of N36 or N51 with C34. Therefore, we suggest that the already formed trimer of heterodimers is not the target of inhibition by DP178. Our results are consistent with a model in which DP178 acquires its inhibitory activity by binding to an earlier intermediate of gp41, in which the N and C peptide regions are not yet associated, thus allowing DP178 to bind to the leucine/isoleucine zipper sequence and consequently to inhibit transition to the fusion-active conformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.