Abstract

Histone deacetylase (HDAC) inhibitors prevent neural cell death in invivo models of cerebral ischaemia, brain injury and neurodegenerative disease. One mechanism by which HDAC inhibitors may do this is by suppressing the excessive inflammatory response of chronically activated microglia. However, the molecular mechanisms underlying this anti-inflammatory effect and the specific HDAC responsible are not fully understood. Recent data from invivo rodent studies have shown that inhibition of class I HDACs suppresses neuroinflammation and is neuroprotective. In our study, we have identified that selective HDAC inhibition with inhibitors apicidin, MS-275 or MI-192, or specific knockdown of HDAC1 or 2 using siRNA, suppresses the expression of cytokines interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in BV-2 murine microglia activated with lipopolysaccharide (LPS). Furthermore, we found that in the absence of HDAC1, HDAC2 is up-regulated and these increased levels are compensatory, suggesting that these two HDACs have redundancy in regulating the inflammatory response of microglia. Investigating the possible underlying anti-inflammatory mechanisms suggests an increase in protein expression is not important. Taken together, this study supports the idea that inhibitors selective towards HDAC1 or HDAC2, may be therapeutically useful for targeting neuroinflammation in brain injuries and neurodegenerative disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call