Abstract

Studies have shown that an overproduction of mitochondrial reactive oxygen species (ROS) is an initiating cause in the pathogenesis of diabetic complications. However, uncoupling protein 2 (UCP2) can protect retinal vascular endothelial cells from damage by inhibiting the overproduction of mitochondrial ROS, although the protective mechanism involved is not completely clear. This study aimed to assess the effect and mechanism of UCP2 on the apoptosis of human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in normal glucose (NG, 5.5 mmol/l) or high glucose (HG, 30 mmol/l) medium in the presence or absence of UCP2(+/+) lentiviral transfection. Lentivirus-mediated UCP2 overexpression inhibited the apoptosis of HUVECs induced by HG. Treatment with HG resulted in the upregulation of caspase-3 and cytochrome c and the downregulation of Bcl-2 in vitro. Furthermore, compared with the NG group, the rate of apoptosis was significantly increased in the HG group. On day two post-infection, NG cells showed significantly greater HUVEC cell proliferation than HG cells. Notably, UCP2 overexpression inhibited these processes. Taken together, these results suggest that UCP2 promotes cell proliferation and inhibits HG-induced apoptosis in HUVECs via the Bcl-2 up‑ and downregulation of caspase-3 and cytochrome c in vitro. This may provide experimental evidence for the application of UCP2 as a new protective factor for diabetic complications, such as diabetic retinopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.