Abstract

Hepatitis B virus (HBV) infection is a worldwide health problem. To determine whether RNA interference (RNAi) could inhibit ongoing HBV replication in 2.2.15 cells, we constructed shRNA-producing vector pU6P based on the mouse U6 RNA promoter and cloned 12 targeted sequences against HBV into the vector, resulting in a series of pU6-siHBV vectors. The recombinant vectors were transfected into 2.2.15 cells, HBsAg and HBeAg in cultured media were assayed using enzyme-linked immunosorbent assay at various days after transfection. The amount of HBV DNA in the culture medium was quantitated by real-time polymerase chain reaction. HBsAg and HBeAg expression were inhibited by 72.8 +/- 5.4% (P = 0.00003) and 55.8 +/- 6.2% (P = 0.000026), respectively, 4 days after transfection with pU6-siHBV5. The greatest inhibition of HBV DNA was decreased by approximately 1.9-fold (P = 0.013) on day 6 post transfection with pU6-siHBV11 compared with that of empty vector. No change was found for HBV protein expression and DNA replication on pU6-siGFP (negative control) transfected cells. Our data demonstrate that the transfection of HBV-targeted shRNA-producing vector in 2.2.15 cells could inhibit the HBV protein expression and HBV DNA replication specifically. RNAi may be considered as a potential antiviral approach for human HBV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.