Abstract

The hepatitis B virus (HBV) reverse transcriptase (RT) plays a multitude of fundamental roles in the viral life cycle and is the key target in the development of anti-HBV chemotherapy. We report here that the endogenous small molecule iron protoporphyrin IX (hemin) and several related porphyrin compounds potently blocked a critical RT interaction with the viral RNA packaging signal/origin of replication, called epsilon. As RT-epsilon interaction is essential for the initiation of viral reverse transcription, which is primed by RT itself (protein priming), the porphyrin compounds dramatically suppressed the protein-priming reaction. Further studies demonstrated that these compounds could target the unique N-terminal domain of the RT protein, the so-called terminal protein. Hemin and related porphyrin compounds thus represent a novel class of agents that can block HBV RT functions through a mechanism and target that are completely distinct from those of existing anti-HBV drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.