Abstract

The mechanisms of major histocompatibility complex (MHC) class I downregulation during Epstein-Barr virus (EBV) replication are not well characterized. Here we show that in several cell lines infected with a recombinant EBV strain encoding green fluorescent protein (GFP), the virus lytic cycle coincides with GFP expression, which thus can be used as a marker of virus replication. EBV replication resulted in downregulation of MHC class II and all classical MHC class I alleles independently of viral DNA synthesis or late gene expression. Although assembled MHC class I complexes, the total pool of heavy chains, and beta2-microglobulin (beta2m) were significantly downregulated, free class I heavy chains were stabilized at the surface of cells replicating EBV. Calnexin expression was increased in GFP+ cells, and calnexin and calreticulin accumulated at the cell surface that could contribute to the stabilization of class I heavy chains. Decreased expression levels of another chaperone, ERp57, and TAP2, a transporter associated with antigen processing and presentation, correlated with delayed kinetics of MHC class I maturation. Levels of both class I heavy chain and beta2m mRNA were reduced, and metabolic labeling experiments demonstrated a very low rate of class I heavy chain synthesis in lytically infected cells. MHC class I and MHC class II downregulation was mimicked by pharmacological inhibition of protein synthesis in latently infected cells. Our data suggest that although several mechanisms may contribute to MHC class I downregulation in the course of EBV replication, inhibition of MHC class I synthesis plays the primary role in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.