Abstract
Using mouse L929 cells stably transfected with a glucocorticoid receptor (GR)-responsive murine mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter gene (LMCAT2 cells), we have shown that cellular stress (heat or chemical shock) can cause a dramatic increase in the levels of dexamethasone (Dex)-induced CAT gene expression. We refer to this response as the heat shock potentiation effect, or HSPE. As the cellular heat shock response also involves the activation of heat shock transcription factor (HSF), we have, in the present study, examined the role of HSF in the stress potentiation of GR by use of a flavonoid compound, quercetin, recently shown to selectively inhibit the stress response in a variety of human and murine cell lines. Analysis of the HSPE, as well as heat shock protein synthesis and activation of HSF during time-courses of recovery following heat shock, revealed a similar pattern for each response, with peak activities occurring about 16 h after stress. These data suggest a correlation between the activation of both GR and HSF in stressed cells. In L929 cells stably transfected with a CAT reporter plasmid under the control of the HSF-responsive hsp70 promoter (LHSECAT cells), pretreatment with quercetin was found to cause a dose- and time-dependent inactivation of HSF activity following heat shock, but only when added before the stress event. In LMCAT2 cells, quercetin similarly inhibited both heat and chemical shock potentiation of Dex-induced GR activity. This activity of quercetin was not the result of post-transcriptional or general cytotoxic properties, as quercetin (1) did not significantly affect GR or HSF activities when added after the stress event, (2) did not reduce CAT gene expression as controlled by the constitutive SV40 early promoter, and (3) did not alter normal (non-stress), Dex-induced MMTV-CAT expression. Thus, quercetin appears to be an effective and selective inhibitor of HSF stress-induced activation and its ability to prevent the stress potentiation of GR suggests either a direct or indirect involvement by stress-activated HSF in this process, or the existence of a regulatory step common to both the heat shock and HSPE responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.