Abstract

Histone deacetylase 6 (HDAC6) participates in mouse oocyte maturation by deacetylating α-tubulin. However, how HDAC6 expression is regulated in oocytes remains unknown. In the present study, we discovered that mouse oocytes had a high level of HDAC6 expression and a low level of DNA methylation status in theirpromoter region. Then, a selective HDAC6 inhibitor, tubastatin A (Tub-A) was chosen to investigate the role of HDAC6 in oocyte maturation. Our results revealed that inhibition of HDAC6 caused meiotic progression arrest, disturbed spindle/chromosome organization, and kinetochore-microtubule attachments without impairing spindle assembly checkpoint function. Moreover, inhibition of HDAC6 not only increased the acetylation of α-tubulin but also elevated the acetylation status of H4K16 and decreased the phosphorylation level of H3T3 and H3S10. Conversely, depressed H3T3 phosphorylation by its kinase inhibitor increased the acetylation level of H4K16. Finally, single cell RNA-seq analysis revealed that the cell cycle-related genes CCNB1, CDK2, SMAD3, YWHAZ and the methylation-related genes DNMT1 and DNMT3B were strongly repressed in Tub-A treated oocytes. Taken together, our results indicate that HDAC6 plays important roles in chromosome condensation and kinetochore function via regulating several key histone modifications and messenger RNA transcription during oocyte meiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.