Abstract

We established a serum-free organ culture system of isolated single vibrissa rudiments taken from embryonic day 13 mice. This system allowed us to test more than 30 laminin-derived cell adhesive peptides to determine their roles on the growth and differentiation of vibrissa hair follicles. We found that the RKRLQVQLSIRT sequence (designated AG-73), which mapped to the LG-4 module of the laminin-alpha1 chain carboxyl-terminal G domain, perturbed the growth of hair follicles in vitro. AG-73 is one of the cell-binding peptides identified from more than 600 systematically synthesized 12 amino acid peptides covering the whole amino acid sequence of the laminin-alpha1, -beta1, and -gamma1 chains, by cell adhesion assay. Other cell-adhesive laminin peptides and a control scrambled peptide, LQQRRSVLRTKI, however, failed to show any significant effects on the growth of hair follicles. The AG-73 peptide binds to syndecan-1, a transmembrane heparan-sulfate proteoglycan. Syndecan-1 was expressed in both the mesenchymal condensation and the epithelial hair peg of developing vibrissa, suggesting that AG-73 binding to the cell surface syndecan-1 perturbed the epithelial-mesenchymal interactions of developing vibrissa. The formation of hair bulbs was aberrant in the explants treated with AG-73. In addition, impaired basement membrane formation, an abnormal cytoplasmic bleb formation, and an unusual basal formation of actin bundles were noted in the AG-73-treated-hair matrix epithelium, indicating that AG-73 binding perturbs various steps of epithelial morphogenesis, including the basement membrane remodeling. We also found a region-specific loss of the laminin-alpha1 chain in the basement membrane at the distal region of the invading hair follicle epithelium, indicating that laminins play a part in hair morphogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call