Abstract

Nanocrystalline Fe-1.77at.%C and Fe-3.27at.%C alloys prepared by ball milling iron powders and graphite powders are annealed below 573K where the precipitation of Fe3C does not occur. Upon annealing, a significant grain coarsening is observed in Fe-1.77at.%C alloy, whereas the grain coarsening is inhibited in Fe-3.27at.%C alloy. Within the framework of thermodynamic theories, the inhibition of grain coarsening in nanocrystalline Fe-C alloys is discussed. It is demonstrated that the inhibition of grain coarsening in the nanocrystalline Fe-C alloys can be ascribed to a vanished driving force for grain growth which is caused by the interaction between carbon and the grain boundaries of nanograins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call