Abstract
AbstractIce in both terrestrial and planetary settings often contains rock particles. Here we present an experimental investigation of the influence of intergranular particles on the rheological behavior of ice. Experiments were performed on samples fabricated from 10‐μm ice powders +1‐μm graphite or 0.8‐μm alumina particles and subjected to elevated confining pressures. A critical particle fraction, ∼6%, was observed, below which samples behave like pure ice and deform by both grain boundary sliding (GBS) and dislocation creep, and above which GBS creep is impeded. Above this critical fraction, ice grains occur in particle‐free clusters surrounded by bands of particles mixed with fine‐grained ice, resulting in the impedance of GBS in the bands as well as sliding between the ice clusters. Our results imply that South Polar Layered Deposits and midlatitude lobate debris aprons on Mars must contain >94% ice and that the shallow subsurface of Ceres could contain >90% ice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.