Abstract

Neoplastic transformation of cells is accompanied by an aberration of cell surface glycolipid composition. These tumor-associated, altered glycosphingolipids are often shed into the tumor cell microenvironment and mediate immunosuppressive activity. The nature and form of glycolipids shed by a variety of tumor cell lines and the mechanism(s) of shedding have been well characterized. The murine T cell lymphoma line, L5178Y-R, is known to shed a tumor-associated glycolipid, gangliotriaosylceramide, into the culture medium. We analyzed the effect of glycolipids from L5178Y-R on antigen presentation by murine CD1d1 molecules. CD1d1 molecules present glycolipid antigens to a specialized class of T cells called natural killer T (NKT) cells that mainly express a T cell receptor alpha chain (Valpha14Jalpha281) associated with Vbeta chains of limited diversity. In the current report, we found that L5178Y-R cells express CD1 on their cell surface yet are unable to stimulate CD1d1-specific NKT cells. We hypothesized that the glycolipid(s) shed by L5178Y-R inhibited antigen presentation by CD1d1. Pretreatment of CD1d1(+) cells with conditioned medium from L5178Y-R inhibited CD1-specific stimulation of canonical (Valpha14(+)) but not noncanonical (Valpha5(+)) NKT cells. Exogenous addition of lipids extracted from L5178Y-R cells as well as purified gangliotriaosylceramide mimicked this effect. Inhibition of glycolipid shedding in L5178Y-R cells with d-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol resulted in the rescue of CD1d1 recognition by canonical (but not noncanonical) NKT cells. These results suggest that one means by which certain tumor cells can evade the host's innate antitumor immune response is by shedding glycolipids that inhibit CD1-mediated antigen presentation to NKT cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.