Abstract

Since glycolipid biosynthesis is potentially involved in immunological and inflammatory responses, we tested the effect of a novel inhibitor of intracellular glycolipid biosynthesis N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin (AMP-DNM) in two hapten-induced colitis models: trinitrobenzene sulphonic acid (TNBS)- and oxazolone (4-ethoxymethylene-2phenyl-2oxazoline-5-one; Oxa)-induced colitis. AMP-DNM was given either by intraperitoneal injection or orally via the diet. Mice treated with AMP-DNM had less severe colitis and a more rapid weight recovery, less edema and less wall thickness. Cellular infiltration, goblet cell loss and myeloperoxidase (MPO) activity were reduced in colons of AMP-DNM-treated animals. Intralesional IFN-γ and IL-18 production were lower in mice of the AMP-DNM-treated groups. Furthermore, AMP-DNM treatment reduced the serum anti-TNBS and anti-Oxa antibody levels. Our findings show that the glycolipid biosynthesis inhibitor AMP-DNM has a strong anti-inflammatory and immune suppressive activity on both TNBS- and Oxa-induced colitis. The data also provide evidence that glycolipid biosynthesis is involved in the inflammatory cascade in these inflammatory bowel disease (IBD) models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.