Abstract

In hepatocytes from fasted rats, Zn2+ in the range from 0 to 500 microM has relatively minor effects on gluconeogenesis from most substrates, or on ureagenesis from NH3. In hepatocytes from fed rats, Zn2+ does not affect glycogenolysis. In hepatocytes from fasted rats, in which glycogen is being actively synthesized using the substrate combination (Katz et al. (1976) Proc. Natl.Acad.Sci.USA 73,3433-3437) of glucose, lactate and glutamine (all 10mM), Zn2+ markedly inhibits glycogen synthesis, with total inhibition at 500 microM, and a half maximal effect in the range from 50 to 100 microM. Dipicolinate (pyridine 2,6-dicarboxylate), a zinc chelator, is about as effective as L-glutamine in activating glycogen synthesis with the substrate combination of dihydroxyacetone, lactate and glucose (all 10mM). This suggests the possible hypothesis that endogenous Zn2+ might control the rate of glycogen synthesis in vivo. However, alternate explanations such as metabolite accumulation are also possible, since dipicolinate causes inhibition of gluconeogenesis from L-lactate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call