Abstract

Alzheimer's disease is the most prevalent neurodegenerative disorder, characterized by neurofibrillary tangles, senile plaques, and neuron loss. Amyloid beta peptides are generated from amyloid beta precursor protein by consecutive catalysis by β and γ-secretases. Diversely modified forms of A have been N3pE-42 Aβ has received considerable attention as one of the major constituents of the senile plaques of AD brains due to its higher aggregation velocity, stability, and hydrophobicity compared to the full-length A. A previous study suggested that is catalyzed by glutaminyl cyclase (QC) following limited proteolysis of Aβ at the N-terminus. Here, we reveal that decreasing the QC activity via application of a QC inhibitor modulates-γ-secretase activity, resulting in diminished plaque formation as well as reduced N3pE 42 Aβ aggregates in the subiculum of the 5XFAD mouse model of AD. This study suggests a possible novel mechanism by which QC regulates Aβ formation , namely modulation of γ-secretase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.