Abstract

Activation of glutamate receptors is known to modulate K+ channel surface trafficking, phosphorylation, and function, and increasing evidence has implicated K+ channels in plastic changes in glutamatergic synapses. Kv4.2 channels control the amplitude of back-propagating action potentials and shape postsynaptic responses in hippocampus, and synaptic glutamate receptor activation leads to increased phosphorylation of Kv4.2 channels that is associated with enhanced synaptic plasticity. Thus, we investigated the possibility that activation of extrasynaptic NMDA-type glutamate receptors couples to Kv4.2 channel dephosphorylation. In hippocampal neurons, we found that selective activation of extrasynaptic NMDA receptors dephosphorylates Kv4.2 channels, and driving synaptic activity increases phosphorylation of Kv4.2. We also observed that Ca2+ entry through NMDA receptors is necessary for dephosphorylation of Kv4.2 channels. Consistent with a synaptic and extrasynaptic localization at hippocampal synapses, a fraction of Kv4.2 channel clusters was found to localize outside of pre- and postsynaptic markers. Excitatory amino acid transporters (EAATs) regulate ambient extracellular glutamate levels that active extrasynaptic NMDA receptors, and inhibition of glutamate uptake by blocking EAATs with the non-selective transporter inhibitor dl-threo-β-benzyloxyaspartic acid (TBOA) or the EAAT1/3 selective inhibitor l-serine O-sulfate (SOS) dephosphorylates Kv4.2 channels. These findings in conjunction with previous reports support the interesting possibility that synaptic and extrasynaptic NMDA receptors bi-directionally regulate phosphorylation levels of Kv4.2 channels in hippocampus. Moreover, we observed that EAAT activity controls extrasynaptic NMDA receptor modulation of Kv4.2 channel dephosphorylation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.