Abstract

The aim of this study was to demonstrate the in vivo safety and antitumor effect of a novel recombinant vesicular stomatitis virus (VSV): G protein less (GLESS)-fusion-associated small transmembrane (FAST)-VSV. Viral infection efficiency and cell proliferation were detected using an inverted fluorescence microscope and alarmaBlue assay, respectively. To evaluate the safety of the virus, different doses of GLESS-FAST-VSV and a positive control virus (VSV∆M51) were injected into normal F344 rats and C57BL/6 mice, and each animal's weight, survival time, and pathological changes were examined on the following day. To evaluate the efficacy of the virus, RG2 and GL261 cells were used to construct rat and mouse glioma models, respectively, via a stereotactic method. After multiple intratumoral injections of the virus, tumor growth (size) and the survival time of the animals were observed. In vitro experiments showed that GLESS-FAST-VSV could infect and kill brain tumor cells and had less toxic effects on normal cells. After direct injection of GLESS-FAST-VSV into the animal brains, all animals tolerated the virus well, and no animal death, encephalitis, or ventriculitis was observed. In contrast, all animals that received brain injections of VSV∆M51 in the brain died. Moreover, multiple injections of GLESS-FAST-VSV in brain tumors significantly prolonged the survival of normal-immunity animals harboring brain tumors. GLESS-FAST-VSV exhibited little neurotoxicity and could be injected directly into the tumor to effectively inhibit tumor growth and prolong the survival of normal-immunity animals, laying a theoretical foundation for the early application of such viruses in clinical trials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.