Abstract

The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.