Abstract
Vascular injury with endothelial dysfunction results in an imbalance between the production of vasoprotective molecules such as nitric oxide (NO) and deleterious reactive oxygen species (ROS). The purpose of this work was to test the hypothesis that inhibition of geranylgeranyltransferase I (GG Tase I) reduces vascular injury by increasing vascular NO production while decreasing ROS generation. GGTI-298 decreased the formation of intimal hyperplasia at 14 days following balloon injury. GGTI-298 (10 microm) inhibited activation of RhoA and Rac1 as well as inhibited SMC proliferation. GGTI increased SMC-inducible NO synthase (iNOS) levels and NO production in vitro. Additionally, the activation of NAD(P)H oxidase subunits was decreased by GGTI in vitro. This correlated with a decrease in TNF-alpha- or angiotensin-II-induced ROS production assayed by DCF fluorescence. In vivo, GGTI treatment increased endothelial NOS (eNOS) expression in uninjured arteries and iNOS expression in balloon-injured arteries. Furthermore, GGTI treatment attenuated balloon-injury-induced superoxide generation assayed by MCLA luminescence. GGTI decreases the production of ROS and increases the production of NO both in vitro and in vivo. These effects may be mediated via the inhibition of activation of the small GTPases Rac1 and RhoA. Pharmacological inhibition of GGTase I may prove to be a useful clinical adjunct in the treatment of cardiovascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.